Shedding light on air quality in Africa using the Aura observation platform

E. A. Marais (emarais@seas.harvard.edu)

D. J. Jacob, T. P. Kurosu, G. González Abad, K. Chance, L. Zhang, C. C. Miller

HCHO sources include seasonal open fires, anthropogenic influences (Nigeria), and biogenic (isoprene emissions).

Isoprene emissions from vegetation in Africa

Isoprene is a reactive volatile organic compound with climate and health effects

Isoprene Emissions and Environmental Variables in Africa

Temperature and LAI are dominant environmental drivers in Africa

Marais et al. (2012; 2014a)

Isoprene emissions from vegetation in Africa

OMI-derived isoprene emissions are more consistent then MEGAN with field observations

Isoprene emissions (*E*_{ISOP}) [10¹² atoms C cm⁻² s⁻¹]

MEGAN:

Isoprene emissions at standard conditions (E_0)

Isoprene emissions are 70 Tg C in our update inventory (MEGAN gives 104 Tg C)

Atmospheric ozone pollution in Nigeria

Nigeria (pop. 170 million) has inefficient combustion, large sources of NMVOCs and is experiencing rapid economic and population growth.

Anthropogenic Volatile Organic Compounds

Implications for atmospheric ozone pollution (DJF in 2006)

GEOS-Chem DJF surface $O_3 > 70$ ppbv

Aerosol yields from isoprene

Isoprene oxidation products partition to the aerosol phase and form secondary organic aerosols (SOA)

Convert satellite AOD-HCHO relationship to a yield of SOA from isoprene (use summertime observations in the southeast US (SEUS) as a test bed)

Aerosol yields from isoprene (SEUS)

Obtain yields of isoprene SOA with satellite observations of HCHO from OMI and AOD from MISR and MODIS

MISR AOD:OMI HCHO (August)

(Scenes with $\Omega_{HCHO} > 5 \times 10^{15} \,\text{molec cm}^{-2}$)

GEOS-Chem Transfer Function

$$Y_{SOA} = 2.7\%$$

Y_{SOA} = 2.7% for the SEUS in August obtained with MISR AOD

MODIS Aqua average = $3.0 \pm 0.8 \times 10^{-17}$ (2.6%)

MODIS Terra average = $2.7 \pm 0.7 \times 10^{-17}$ (2.3%)

Aerosol yields from isoprene (Africa)

Satellite AOD: HCHO ratio in **Africa** for scenes filtered for biomass burning

Satellite-derived yields fall within the range from chamber studies (1-10%).

Slightly **higher yields** obtained over **Africa** than SEUS, as AOD is similar for the two regions, but the biogenic signal over Africa is lower.

Conclusions and Ongoing Work

OMI HCHO and coincident observations from Aura (and other NASA satellites) have been effectively used in Africa to:

- 1) Quantify **isoprene emissions** in Africa
- Identify temperature and LAI as dominant drivers of isoprene seasonal variability
- 3) Estimate NMVOC emissions and provide constraints to evaluate atmospheric ozone pollution in Nigeria
- 4) Obtain isoprene yields of SOA representative of the ambient atmosphere for Africa and the SEUS

NEXT: Evaluate the <u>climate impact</u> of isoprene using our updated isoprene SOA yields

Supplementary Slide: Aerosol yields from isoprene

GEOS-Chem captures the HCHO-AOD relationship over the US, but not Africa

MODIS biogenic AOD

GEOS-Chem biogenic AOD:HCHO is an order of magnitude too low in Africa.